PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons

Related Articles
Design and Evolution: Molecular Sleuthing Reveals Drug Selectivity
June 2015
Families in Gene Neighborhoods
June 2015
Ryanodine Receptor
April 2015
CCR5 and HIV Infection
January 2015
Drug Targets: Bile Acids in Motion
September 2014
Drug Targets: S1R's Ligands and Partners
September 2014
P2Y Receptors and Blood Clotting
September 2014
Bacterial CDI Toxins
June 2014
Glucagon Receptor
April 2014
March 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Design and Discovery: Virtual Drug Screening
January 2014
Cancer Networks: IFI16-mediated p53 Activation
November 2013
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Finding Druggable Targets
October 2013
Drug Discovery: Identifying Dynamic Networks by CONTACT
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Infectious Diseases: Determining the Essential Structome
May 2013
NDM-1 and Antibiotics
May 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Cytochrome Oxidase
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Regulatory insights
September 2012
Solute Channels
September 2012
Pocket changes
July 2012
Receptor bias
July 2012
Anthrax Stealth Siderophores
June 2012
G Protein-Coupled Receptors
May 2012
Substrate specificity sleuths
April 2012
Reading out regioselectivity
December 2011
Superbugs and Antibiotic Resistance
December 2011
Terminal activation
December 2011
A change to resistance
November 2011
Docking and rolling
October 2011
Breaking down the defenses
September 2011
A2A Adenosine Receptor
May 2011
Cell wall recycler
May 2011
Subtly different
March 2011
January 2011
Subtle shifts
January 2011
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Peptidoglycan binding: Calcium-free killing
June 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Antibiotics and Ribosome Function
March 2010
Safer Alzheimer's drugs?
March 2010
Anthrax evasion tactics
September 2009
GPCR subunits: Separate but not equal
September 2009
Antibiotic target
August 2009
Salicylic Acid Binding Protein 2
August 2009
July 2009
Tackling influenza
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Anthrax stealth molecule
March 2009
Drug targets to aim for
February 2009
High-energy storage system
February 2009
Transporter mechanism in sight
February 2009
Scavenger Decapping Enzyme DcpS
November 2008
Blocking AmtB
September 2008

Research Themes Drug discovery

Glucagon Receptor

SBKB [doi:10.3942/psi_sgkb/fm_2014_4]
Featured System - April 2014
Short description: PSI researchers have solved the structures of a GPCR that binds to peptide hormones, revealing new modes of GPCR recognition.

GPCRs (G protein-coupled receptors) come in many sizes and shapes, each recognizing its own type of signaling molecule. PSI researchers at the GPCR Network have recently determined the structure of the signature seven-helix bundle of the glucagon receptor, revealing the atomic details of a class of GPCRs that recognize short peptide hormones. This structure, along with the related structure of the corticotropin-releasing factor receptor 1, show that "class B" GPCRs have similarities and differences from their GPCR cousins.

Peptide Sandwich

Class B GPCRs have a characteristic structure composed of two connected domains. They include a transmembrane domain (in turquoise here) that is similar to other GPCRs, forming a bundle of alpha helices that link binding of the hormone (in pink) to activation of a G-protein inside the cell. An additional domain (in darker blue) is attached on the outer side of the receptor. The peptide hormone is thought to be captured first by this extracellular domain and then delivered to the transmembrane domain.

Structures by Parts

These receptors are quite flexible and have posed great challenges for structural determination. Researchers have taken a divide-and-conquer approach, breaking the receptor into manageable pieces for structural analysis. Many structures have been obtained for the extracellular domains, on their own and bound to their peptide hormones. Structures for the transmembrane domain have been more elusive, and two structures have only recently been reported to complete our picture of the class B GPCRs: the glucagon receptor (PDB entry 4l6r) and and the corticotropin-releasing factor receptor 1 (PDB entry 4k5y). The illustration shows a model of the full-length complex of the glucagon receptor with glucagon, created by PSI researchers based on conformational modeling, crosslinking, and mutational data.

Hormone Mimics

Structural analogues of the peptide hormones are being used to modify the action of these receptors, for use in the treatment of diabetes and other disorders. The structure on the left shows glucagon-like-peptide-1 (in pink) bound to the extracellular domain of its receptor (blue) (PDB entry 3iol). As with glucagon and its receptor, the hormone forms a short alpha helix that presumably spans between the two domains of the receptor. Exendin-4, a short peptide discovered in the saliva of the Gila monster, also binds to this receptor, having a similar affect on the release of insulin. However, it has several features, such as a tryptophan that forms a compact "cage" structure (seen here near the top), that together stabilize the formation of the active alpha helix (PDB entry 1jrj).

The Same but Different

As with the other recent structures of GPCRs, researchers used protein engineering to determine the structures of these elusive subjects. The extracellular domains were removed, and another small, stable protein was inserted in the chain, forming a convenient handle to assist crystallization. The structures of two class B GPCRs (PDB entries 4l6r and 4k5y, shown at left and center) have the familiar bundle of alpha helices spanning the membrane, but showed that the helices are splayed open to create a large binding site for the peptide hormone. To compare these two new structures with a class A receptor (PDB entry 2rh1, shown on the right), the JSmol tab below displays an interactive JSmol.

GPCR Structures(PDB entries 4k5y, 4l6r and 2rh1)

The transmembrane domains of two class B GPCRs are overlapped here, along with one class A GPCR. Notice that the helices are splayed open in the class B receptors to create a large binding site for the peptide hormones.


  1. Hollenstein, K., et al. Insights into the structure of class B GPCRs. Trends Pharm. Sci. 35, 12-22 (2014).

  2. Hollenstein, K., et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438-443 (2013).

  3. Siu, F. Y., et al. Structure of the human glucagon class B G-protein-coupled receptor. Nature 499, 444-449 (2013).

  4. Underwood, C. R., et al. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J. Biol. Chem. 285, 723-730 (2010).

  5. Cherezov, V., et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258-1265 (2007).

  6. Neidigh, J. W., Fesinmeyer, R. M., Prickett, K. S. & Andersen, N. H. Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle- associated states. Biochem. 40, 13188-13200 (2001).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health