PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
May 2008

Research Themes Cell biology

Mitochondrion: Flipping for UCP2

SBKB [doi:10.1038/sbkb.2014.233]
Featured Article - December 2014
Short description: NMR studies reveal how UCP2 facilitates translocation of protons across the mitochondrial membrane via fatty acids.

Fatty acid binding to UCP2 and inhibition of fatty acid binding by GDP. NO-FA and NO-GDP represent nitroxide-labeled FA and GDP, respectively. Figure courtesy of James Chou.

The proton gradient across the inner mitochondrial membrane stores energy that can be used for ATP synthesis. This energy can also be dissipated via uncoupling proteins (UCPs), which shuttle protons down the electrochemical gradient in the presence of fatty acids, generating heat, regulating metabolism and reducing reactive oxygen species.

Berardi and Chou (PSI MPSbyNMR) had solved the structure of UCP2 (PDB 2LCK, highlighted previously at the PSI-SBKB) using NMR residual dipolar coupling (RDC) and paramagnetic relaxation enhancement (PRE) data. UCP2 forms a channel composed of three helical pseudo-repeats within the inner mitochondrial membrane.

To dissect the mechanism by which UCP2 works with fatty acids to transfer protons across the membrane, the authors employed chemical shift mapping and PRE to map the site of interaction of fatty acids on UCP2. The data indicated that the fatty acid acyl chain binds to a hydrophobic groove on the periphery of the protein, and the negatively charged head group interacts with basic residues near the matrix side. Subsequent RDC analysis showed that guanosine diphosphate binding within the hydrophilic cavity of UCP2 induces changes in the structure and/or dynamics of the hydrophobic groove that displace the fatty acid, consistent with its role in inhibiting UCP-mediated proton translocation.

The authors tested their model by mutating basic residues proposed to interact with the fatty acid head group. Such mutations reduced the ability of UCP2 to translocate protons across the membrane. However, basic residues within the cavity were also important for channel activity, suggesting that they create an electrostatic path that guides the fatty acid head group through the mitochondrial membrane.

They propose that fatty acids on the outer side of the inner membrane bind to protons and readily flip-flop across the membrane, depositing the proton into the mitochondrial matrix. The fatty acid then binds to UCP2, and basic residues within the hydrophilic cavity of the protein guide the acidic head group of the fatty acid across the membrane.

Jennifer Cable


  1. M. J. Berardi and J. J. Chou Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria.
    Cell Metab. 20, 541-552 (2014). doi:10.1016/j.cmet.2014.07.004

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health